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ON THE THEORY OF MIGRATION AND
COALESCENCE OF BUBBLES IN SOLIDS

by

E. E. Gruber

ABSTRACT

The surface-diffusion migration of an isolated pore
ina solid isanalyzed in detail. The results, which are simi-
lar to earlier results, are applied in analyses of bubble co-
alescence during postirradiation annealing. Coalescence is
considered, first, asa result of random migration of bubbles,
in which case the results confirm earlier results that the
mean bubble radius should be proportional to (time)Y®, and
second, as a result of biased migration of bubbles. In the
latter case, the predicted mean radius increases linearly
with time. In bothcases, the bubble-size distributionis cal-
culated and used to predict the swelling of the solid, which is
about 15% greater in the first case and up to 65% greater in
the second case than predicted by approximate treatments
based on change in the mean bubble radius with time.

I. INTRODUCTION

Considerable interest has been shown recently in the subject of gas-
filled pores, or "bubbles," in solids. Although interest developed initially
because of the swelling of nuclear fuel materials due to the presence of
entrapped fission gases, increasing consideration is being given to bubbles
as a means of studying certain basic properties of materials. This interest
has been spurred by the demonstration by Barnes and Mazey' that helium
bubbles can be observed in alpha-particle irradiated copper foils upon pulse
heating in the electron microscope. Valuable information concerning the
anisotropy of surface tension of solids under a very pure inert atmosphere
can be obtained by observation of bubble shapes, which should be related
to the equilibrium shape of a fixed volume of solid. The feasibility of this
approach has been demonstrated by Nelson, Mazey, and Barnes.?

The present work is concerned with the relationship between surface
diffusion and bubble migration and coalescence. Shewmon® has shown that
the observation by Barnes and Mazey' that small bubbles migrate in a ther-
mal gradient with a velocity inversely proportional to the bubble radius in-
dicates that surface diffusion is the dominant transport mechanism, so that
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a small bubble moves primarily by diffusion of metal atoms over the inner
surface of the bubble. Shewmon has suggested the possibility of studying
the rate of spheroidization of two bubbles that coalesce, in conjunction with
the analysis of Nichols,* as a means of determining the surface-diffusion
coefficient. Because of the rapid approach to the equilibrium shape for
small bubbles, the surface-diffusion coefficient Dg should be measurable at
lower temperatures and on more materials than otherwise possible.?

The approach in the present analysis is to consider the migration and
coalescence that result under certain idealized situations in the hope that
experimental observations of bubble migration and coalescence under lab-
oratory conditions can give useful information concerning the surface-
diffusion coefficient and other material parameters. It isassumed throughout
that the gas behaves ideally, that the gas pressure is balanced by surface
tension, and that re-solution of the gas does not occur. Because of the neg-
ligibly small importance of very small bubbles with regard to swelling, de-
viations from the above-assumed behavior should not be a significant source
of error. It is further assumed that the gas is initially present as very
small bubbles (so that nucleation is ignored), and that coalescence occurs
instantaneously upon collision of two bubbles. Finally, it is assumed for the
present analysis that the matrix is free of dislocations and grain boundaries
and that bubbles do not interact except upon collision.

II. PORE MIGRATION BY SURFACE DIFFUSION

Since coalescence is regarded in this analysis as essentially a col-
lision process, the relations for pore migration are basic to the analysis of
coalescence. The velocity of a spherical pore migrating by surface diffusion

will first be calculated by considering
the driving force as a force on the in-
dividual atoms comprising the pore
surface. This force per atom will then
2 t be related to the equivalent force on
the pore, after which the results will
B i SRS be used to define a pore-diffusion
o coefficient, Dp.

B It is assumed that the pore is
initially spherical with radius r and
is centered at the origin, as shown in
Eipa 15 It ciforce {5 exerted infthe

39587 positive x-direction on each mobile
Fig. 1. Schematic Representation of a atom in the surface, the pore will
Migrating Pore in a Solid migrate in the opposite direction with
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a velocity v, as though the pore were driven by an equivalent force F. The
flux jg across a unit length on the surface is given by the product of the
surface density ¥ of atoms involved in surface diffusion and the average
drift velocity V, which is given by the Nernst-Einstein relation.® This flux
is

. Dg vDsg .
Jge = ¥V = v—fg :Ffsm e,

where Dg is the surface-diffusion coefficient, kT has the usual meaning, and
fs = f sin 6 is the magnitude of the component of the force f parallel to the
surface.

The rate at which a surface element moves normal to the surface is
equal to the rate of volume change per unit area; this change is given by the
product of atomic volume () and the negative divergence of the flux. The unit
of area is taken as a strip of surface at constant 6 of width r A6, because of
the rotational symmetry about the x-axis. The flux leaving this strip by
crossing the line at 6 is given by the product of flux per unit length and the
line length,

2TrvDgf
20F TS el @

The flux entering the strip at 6 + A6 is

2rvDf 20 +00)
jio = ——— si +06).
Jd ©T sin?(

Since the area of the strip is 27ir? sin 6§ A6 for small AB, the speed of a
surface element normal to the surface is

at  ABR,2nr’sin 6 A6 kI sin®  df

i (G--iv) Q QQvDsf  4(sin® 9)

il

where dp/dt is the time rate of change in length of the vector from the origin.
Substituting for the derivative and taking Qv = QY3 = 0.891a, for the fcc
lattice, where ag is the interatomic distance, we obtain

Q _ 1.783.0Dsf (1)
& g e

It can be shown from this equation that the change in p with t is such that
the pore remains spherical and translates along the x-axis. The translation
velocity can be obtained by setting 6 = 0 in Equation (1) to give

_1.78aoDs £. (Z)
FicE

v =
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This result is in close agreement with the result obtained by Green-
wood and Speight6 by a different and somewhat approximate treatment, and
is equivalent to the expression obtained by Shewmon? by an alternate, approx-
imate treatment.

The atomic driving force f can be related to the equivalent force F
on the pore by considering the work done by the force F in moving the pore
a distance #. This work (F/, where F is the magmtude of the force F) is
equivalent to the work done by the force f in moving an equivalent number
(3 7rr3/Q of atoms a distance / in the opposite direction. It follows that

f = -(3Q/4amr?) F, (3)

where the minus sign is included because the forces act in opposite direc-
tions. For the fcc lattice, = a(‘;’/ﬁ, so that substitution for f from
Equation (3) into Equation (2) gives

pEs0ia b D
os b

S ———— = ——F, 4
A rikT kT -l

The Nernst-Einstein relation has been used in the last step to define an
equivalent volume-diffusion coefficient Dy, for the surface-diffusion migra-
tion of the bubble,

Dp = 0.301Dg(a,/r)% (5)

This relation differs only slightly in the numerical coefficient from the
relation obtained by Greenwood and Speight® by an alternate method.

III. RANDOM-MIGRATION BUBBLE COALESCENCE
A. Formulation

It is assumed in the present case that coalescence follows bubble
collisions resulting from random migration of bubbles in an infinite, perfect
crystal. A close analogy exists between this problem and that of colloid
coagulation as treated by Chandrasekhar,” who gives for the number of
collisions AFjj of colloid particles in time At

R..
AFj; = 4mDjjRiFiF; |1 + —J—17z At. (6)

In the case of bubble coalescence, AF;; is the number of coalescences
between i and j bubbles in time At, where it is convenient to associate
i and j with particular values of nj, the number of gas atoms in a bubble
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of radius rj. Djj is the appropriate diffusion coefficient, shown by Chan-
drasekhar to be given by D; + Dj, Ryjj is the sum of the bubble radii rj + rj,
and Fj represents the concentration (number per unit volume) of bubbles
containing nj gas atoms each. If the sum of the radii of the bubbles in
question is smaller than the mean distance travelled by the two bubbles
relative to one another, the second term in the brackets in Equation (6) can
be neglected (as was done by Chandrasekhar). Equation (6) can then be
written in terms of the definition of Dy [Equation (5)],

AFy; = 1.zo4wa3DsFiFj(ri+rj)(r-1-4+rj'4) At. (7)

B. Approximate Treatment

It will be seen that the bubble-size distribution function F(nj, t) can
be obtained from Equation (7) by the use of finite-difference methods with
the electronic digital computer. It will be informative, however, to consider
first an approximate solution. If the bubble-size distribution is character-
ized by a simplified distribution of N bubbles, each with radius rij, Equa-
tion (7) can be simplified by substituting for T =ariiand =R S S Then
the decrease in Fj, the total number of bubbles that contain nj gas atoms each
in time At, is given by

AER-SZAR S 0. 632a Dy N2r oAt (8)
since two bubbles disappear with each collision.

Barnes has shown that, according to our assumptions, rj is related

to nj by the expression®

r? = (3kT/87Y) n;, (9)

where 7Y is the surface tension of the solid. Since each bubble formed by
coalescence contains 2nj gas atoms, it follows that the radius of each newly
formed bubble is +/2 ri. For a total concentration of m gas atoms per unit
volume, the number of bubbles of radius rj before coalescence is

3mkT
87T"YriZ i

m
] = e— = 10
= (10)

where Equation (9) has been used to substitute for nj in terms of rij. A
direct calculation of the new mean radius after AFjj collisions gives for
small AFjj the change in mean radius,

Ar = L2 -1)(AF/Fi) 1i. (11)
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Substitution for AF from Equation (8) and for Fj from Equation (10) gives the
result, upon passing to the limit and integrating from r = ro ® 0 att = 0 to
E at T,

r® = 3.74mkTalDgt/y. (12)

For comparison, Speight9 obtained the result
r® = 1§ + 2.6abyfzbkTt exp(-Qs/kT)/mYQ

by summation of a geometric series of pairwise coalescence times. In this
equation, a is the mean atomic spacing, v, is the Debye frequency, Qs is the
activation energy for surface diffusion, f is an entropy factor involved in the
diffusion jump, b is the atomic concentration of gas in the sample, z is a
numerical factor (~4), and the remaining symbols were defined earlier.
Upon substitution for Dg = %a(z,vof exp(-Qs/kT), a=0Y3 and m = b/, and
with the approximation that r, is negligible with respect to r, this equation
reduces to

r® = 6.6mkTaiDgt/y,

which differs from Equation (12) only in the numerical constant. The result
given by Equation (12) is therefore not new. However, it provides a con-
venient means of considering one of the most critical objections to this type
of solution, the use of a mean radius in characterizing the distribution
function.

C. Determination of the Size-distribution Function

The mean radius is defined in terms of the distribution function by

00

r(t) = f riF(ni, t)/), Flng,t),
i=l

i=1
or

r(t) P 31(_T l/Z <nl/2> (13)
g Gt il

where Equation (9) has been used to substitute for ri, and the moment of
order k at time t is defined by

<nk> = ) nkF(ny, t). (14)

=1

[
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10

The volume increase, or swelling, relative to unit initial volume is given

by

wl»&

Z (nj,t) = 0.173(kT/¥)*% <n¥/2>, (15)

where, again, Equations (9) and (14) have been used to express the results
in terms of the appropriate moment of the distribution function. These
moments can be accurately calculated only if the entire distribution function
is known.

The distribution function F(n, t) can be obtained from Equation (7) by
digital-computer calculations based on finite-difference methods. Substitu-
tion for r; from Equation (9) in Equation (7) gives

- 4 8/2 . _
AF;; = 91.7a°DSFiFJ.(v/kT) (n{/z+n;/z)(niz+nj ) e (16)

It is preferable to normalize the function F(n, t) by dividing each
value F; by m, so that the resulting function f(n, t), which represents the
number of bubbles per gas atom per unit volume, is independent of the con-
centration m. The result can be written

AfTc fifj(nil/z+n!/z)(n{z+n-'z) A (17)

1) il J
where T is a dimensionless parameter, which we shall term the "reduced
time," defined by

T = 91.7aDgm(v/kT)”* t. (18)

Equation (17) forms a convenient basis for the finite-difference calculations
because the results are not explicit functions of the various parameters.

In principle, the finite-difference method is used to calculate the
change in an assumed distribution function f(n, 0) in a very short "time
step" A7. This change is used to determine the new distribution, and the
procedure is repeated until the desired number of time steps have been
completed. The reduced time T is given by the sum of the time steps. The
assumed distribution in this case was such that all bubbles were initially
monatomic; that is,

"
—

f(nji, 0) o S =]

=40 o 2211
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Since each collision results in the disappearance of one i and one j bubble
and the formation of one (i +j) bubble, the distribution at reduced time
T + AT is found from the relations

00

f(ni, T+A7) = £(ny,T) - ) By (19a)
=
j-1

f(nj,T+AT) = f(nj,'l') - z Afij; (19b)
i=1

f(nj4+j, T+AT) = f(ni+j’T) + Z Afij' (19c¢c)

i3

The limits have been chosen to prevent double counting, and the sum in
Equation (19c) is over all values of i and j such that i = j and Bigi =
nj + nj.

The method of using these relations in a digital-computer program
was relatively straightforward; 200 values of f; were stored in memory and
comparisons were made according to Equation (17) to calculate the change
Afij/A‘r. The calculated changes were stored in memory for each value of
i, and a value of AT was calculated such that the largest change Af; would
be some predetermined fraction of the largest value of f;. This fraction
was taken in most cases as 0.05, which gave a reasonable compromise be-
tween the excessive computer time required for a smaller fraction and the
excessive inaccuracy that would result for a larger fraction. The calculated
value of AT was added to the time memory and was used to calculate the
actual changes Af;, which were then added to the previous values of fj. The
calculations were repeated until no further information could be gained.

The total number of steps used was over 400, with a resulting range in 7 of
more than six powers of ten. A doubling procedure was used to increase the
range of n while retaining only 200 values of i in memory; that is, nj =1
was used until f,;p became significant; then n; = 2i was used, and the doubling
of the increment An was repeated as necessary.

After each set of five time steps, the distribution function was
printed out and several calculations were made. The important results to
be obtained from the calculations are the mean bubble radius r and the
relative swelling of the sample AV as functions of the reduced time 7. These
parameters are defined in terms of moments of the function F(n, t) by Equa-
tions (13) and (15). The first moment <n!> is also of interest as a check on
the accuracy of the calculation, since <n!> is the total number of gas atoms
per unit initial volume and should be independent of time and equal to m.
The kP moment, defined by Equation (14), is given in terms of the computer
results by the approximate expression
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200
<nk> = mAn Z n%cfi.

i=1

(20)

The following characteristic values of n were also calculated:

1]

(@72 = (<n"2>/<n)%

n;

n, = 6 = <n'>/<n%;

2/3

« n3/2>/< n®> )7-/3‘

2 = (n72)

(21a)
(21b)

(21c)

These characteristic values give the appropriate values of n to be used in
calculation of the mean radius, the mean number of atoms per bubble, and
the mean bubble volume. The differences in these values give an indication

of the error inherent in the earlier approximate treatments, which must
assume all characteristic values to be the same. The rates of change of

these values with 7 were also calculated.

D. Results

As T increases, it is expected that the coalescence of smaller bubbles
to form larger ones will cause the distribution function to diminish with time

= T:1.45%10°

f(n,7) X108
@
1

T=375XI0°

BUBBLE SIZE DISTRIBUTION FUNCTION,

it | | | | |

[} 100 200 300 400 500 600
NUMBER OF GAS ATOMS PER BUBBLE, n

40412

Fig. 2. Size-distribution Functions at
Different Times for Random-
migration Bubble Coalescence

for small n and to increase
with time for large n. The
area under the curve should
also decrease, since the total
number of bubbles decreases
withtime. This expected be-
havior was observed,as shown
in Fig. 2 by the calculated

functions for three values of 7.

The calculated distribution in
each case was fairly smooth,
although some oscillation was
evident; f; was slightly greater
for even values of i than for
odd values. However, this
small oscillation did not sig-
nificantly influence the re-
sults, as shown by the fact that
after 400 time steps the cal-
culated total number of gas
atoms had dropped only to
0.99998m.

12



{68)

{al.‘.-‘
1SILY
(2N

ol BeGi o ul o
Beve ot st 3
mottaotbns’ vp i -as]
L LT e :

) (ol ST S 3564

- aafddud salls P
aﬁﬂﬁ A1t Aedniaiib o :
WBEET ML BT A RELH

. :T SO ThY e ptl ol

1 bipodE oy adi

| Wf’d*i 24
Goamed b anid 0 desn

~od Batspoay 2l Sssdriirts

GWals 35 L8V e s Sh AW, S0l vs
OREIRIl SRS S iR

o I aspi BV anY At a0

ai aoriocitic i st latES

3 .r.‘aopm« ylnasl asw SNk

. B‘B‘WL colisl iroee hasde r";}';:(\:*

aotaan g ATl 5o fT nhiy

- wbY asdt i sl acsiavin wert

gl o ovioF A 18y bise

~33": 10 Hihinotis! i [Enines

SR

L R A

‘Jr:‘i", 5y 213 O Y il
9;’:',1) ) bi . ¢

fylpo b ; b ey

Bradins & Ho*

o
zs\,;‘,‘;’l

Sicna itz rastostads
if aatlie it aell To R X
Yils s I A DN Jiﬁdﬁd ”‘*
seai 1oytN
it Aite it men s Ie s
o R a B o !s.ufﬂ'

ERR O i
Lrnan tsyial sk |
A¥




Plots of the various parameters and successive distribution curves
showed that after a very short time the shape of the distribution changed in
a definite manner and that log-log plots of the parameters as functions of
T yielded straight lines, as indicated in Fig. 3. The calculated slopes of
these plots varied within about 0.5% of 2/5 for n,, n; and n3. The same
accuracy was found for the other slopes, which were about —2/5 for <n°>,
-1/5 for <n¥2>, 0 for <n'>, and 1/5 for <n¥2>.
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Fig. 3. Dependence of Bubble Distribution Parameters on Time

The same results would be obtained if the distribution function were
given by

F(n; t) = m7™Y5Z sl (22)

where u = n7~ 5. It is thus possible to standardize the distribution curve
as shown in Fig. 4. The theoretical distribution function F(n, t) can be cal-
culated for any set of experimental parameters from this curve by multi-
plying the values on the ordinate by m7~ %% and those on the abscissa by RIS

0.15

°
=)

Rigyd

Size-distribution Function
for Random Coalescence

FUNCTION, ZI (u)

STANDARD DISTRIBUTION
o
o
o

40413
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The parameters can be expressed from these results as functions of
T, and by substitution for 7 from Equation (18), it can be shown that

r = 1.30[mkTaiDgt/v]"?, (23a)
and
AV = 0.75(mkT/v)[mkTaiDgt /v]"”". (23b)

As an example of the results predicted by this analysis, consider the
case of copper at 1000°K°with m = 10% helium atoms per cm3 ¥V = 1.7 x
10° ergs/cmz, B2 SbR AN and il o= o)== cmz/sec. The term in brackets is
3.3 x 107™*% (t in seconds). Fort = 3 x 108 sec, or about one month, the pre-
dicted values are r £ 42 A and AV = 0.006%.

The limited effect of random coalescence emphasizes the need for
more quantitative consideration of other mechanisms of swelling, such as
grain-boundary sweep'mg,m'll dislocation effects,® thermal gradients and
other external effects that lead to unidirectional forces on bubbles, and per-
haps bubble interactions.

Although the computer approach to the problem is not of great value
in this particular case, the results clearly show that it is a valid approach to
the problem. Further, it can be shown that the approximate solution gives
results identical to Equations (23a) and (23b) except that the numerical co-
efficient for AV is reduced to 0.65. The error in AV due to the use of the
approximate solution is about 15% in this case and can be much worse in
other cases. Approximate treatments are more tenuous for the case of a
uniform driving force, and some other approach such as that used here is
necessary for a quantitative, theoretical treatment. This problem is con-
sidered in the next section.

IV. BIASED-MIGRATION BUBBLE COALESCENCE

A. Formulation

If a uniform driving force that tends to move all bubbles in the same
direction is present, it is not possible to characterize the distribution of
bubble sizes by a mean radius r, since then all bubbles would migrate with
the same speed and in the same direction, and no coalescence beyond that
considered in the preceding section would occur. It is therefore necessary
to consider the manner in which the bubble size varies in the sample. Co-
alescence occurs when a smaller bubble overtakes a larger, and hence
slower, bubble. The collision volume is the volume of a cylinder of radius
r, + r, and of length (v, -v,) At, since only the difference in speed leads to
collisions. The probability of collision of a particular small bubble con-
taining nj gas atoms with a larger bubble containing nj gas atoms is given
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by the product of collision volume and number of nj bubbles per unit volume,
for a sufficiently small collision volume, so that the totalnumber of collisions
between nj and nj bubbles in unit volume in time At is

AGij = TGiGj(ri+rj)’(vi-vj) At, (24)

where the distribution of bubble sizes is given by the function G(n, t) and we
have written Gj for G(ni, t). Equation (24) can be written in terms of nj by
substituting for vj from Equation (2) and for rj from Equation (9). In terms
of the "normalized" distribution function g(n, t), obtained by dividing the
function G(n, t) by m, the number of gas atoms per unit volume, we obtain,
after some simplification,

Agij = gigjnY?+nY a2 n;V2) AT, (25)

where 7' = - 1.93maoDsft(7kT)_I/Z is a dimensionless "reduced time." (Note
that f is negative in this formulation.) Equation (25) is analogous to Equa-
tion (17) for the case of random-migration coalescence and has been used in
the same manner to obtain the distribution function g(n, t) by finite-difference
methods.

B. Approximate Treatment

It is interesting to consider first an approximate approach similar to
those considered previously. Although as stated above the distribution cannot
be characterized by a mean radius, it can be characterized by two radii such
that

= el e ) (26)
and
r, = r(l+q), (27)

where r is the mean radius and gq is a number less than one, which gives a
measure of the variance of the distribution g(n, t). If the distribution is
approximated by N, bubbles of radius r, and N, bubbles of radius r;, where
N, = N, = %N, then Equation (24) can be simplified to give, for the number
of collisions in time At,

3.56Ta Dgf N%rq

LhwgEiof AT AL, 28
AN kT I-gqg? e

Each collision results in the loss of one bubble of each size and the formation
of a larger bubble of radius r;. From conservation of gas atoms and Equa-

tion (9), r; is given by

vy (rf+r§)l/z = '\/2-(1+q2)l/2 S

15
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Calculation of the new mean radius after a small number of collisions, and
subtraction of the original mean radius, gives for the change in mean radius

Ar = [/2(1+9)"? - 1)(AN/N) r. (29)

Since the concentration of gas atoms m is given by the sum Nn; + Npn, =
—N(n1+nz), it follows from Equation (9) that

3mkT 1

T st TE i

Substituting in Equation (29) for AN from Equation (28) and for N from Equa-

tion (30), passing to the limit and integrating fromr = ry = 0att = Oto r .
at t, we obtain, for the mean radius as a function of time,

SR e (31)

l-q Y
Again the negative sign enters because f is taken negative. It is assumed in
the integration that q is independent of r. Although the appropriate value of
q is unknown, the more detailed calculations that follow indicate that q = 1/2-
This value in Equation (31) gives

r = -0.4maoDgft/Y. (31a)

It follows from the approximate relation for swelling, as given by Barnes,®
that ;

AV = m;;rr = _0.2(m/Y)? KTaoDsft. (31b)

This equation is based on the approximation that all bubbles have radius r.
If we use instead the better approximation, that half the bubbles have radius
r,, the other half r, then it can be shown that a correction factor given by
(oL +3q2)/(1 +q2) must be inserted in Equation (31b). The value of this factor
for q = 1/2 is 1.4, so that the predicted swelling is given by

~ 1+ 3g% mkTr . 2
= = 0. kTaoDgft. 1
AV l—+qz_ >y 0 28(1’1’1/’\/) apDgft (3 C)

It will be seen from the results of the next section that this estimate is
still about 15% too low.

C. Determination of the Size-distribution Function

To obtain a more accurate estimate of the behavior of bubbles in a
force field, we return to Equation (25) and consider the finite-difference

16
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approach. The method of calculation is similar to that used in the case of
random-migration coalescence. Instead of a singular input, the initial
distribution was taken to be the result given by the previous calculation
after a very short annealing time. This initial distribution was used be-
cause the singular input used previously would not permit coalescence,
since Equation (25) predicts no

4 .
T T T coalescence for equal-sized

bubbles; further, some random-
migration coalescence would

necessarily occur, and initially
T=185.4 would dominate the coalescence.
Preliminary claculations based
& Vi - on Equation (25) showed that the
i required range in n increased
so rapidly that the doubling

L = procedure used in the previous
case was inadequate. The dis-
tribution curves given in Fig. 5

o L L L ! indicate that the distribution at
0 5 10 15 20 25

NUMBER OF GAS ATOMS PER BUBBLE,n X I0°

q(n,T") X 10°

BUBBLE SIZE DISTRIBUTION FUNCTION,

any time t decreases very

slowly with increasing n. It

was noted, however, that plotting
Fig. 5. Size-distribution Functions at Different Times gln, 7') vs log n yielded a curve

for Biased-migration Bubble Coalescence resembling a normal distribu-
tion (Fig. 6). This curve

decreases fairly sharply to zero at both large and small values of log n.

Because of this behavior nj was taken as exp(i/lO), and i was taken from

1 to 125. This approach uses

42291

values of nj that are uniformly
spaced ona logarithmic scale.
To increase the range in n, it
wasnecessary only toadd val-
ues at the high end; when this
became necessary, it was pos-
sible todrop values at the low
endbecause g(n, T')was essen-
tially zero for the smallvalues

IS

| | o s o U o 15T

3 T'-185.4 =

g(n, )X 10°
N
T
|

af .
T:-231.9

BUBBLE SIZE DISTRIBUTION FUNCTION,

This approaCh leadSto [} 1 1 |ll 1 | S IIIIII L VSRR
some difficulty and inaccuracy 10 10° 10" 10°

because of the problem of as- NUMBER OF GAS ATOMS PER BUBBLE, n

'S
(]
3]
©
o

signing the correct subscript
to the bubbles formed by co- Fig. 6. Semilogarithmic Plot of Distribution
alescence. The method used Function for Biased-migration
was to take "differentials," Coalescence
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Anj = ni/IO,

which follows from the definition of nj as an exponential, and to pair these
increments with the appropriate values of nj. Each time i and j bubbles
were compared, the appropriate value of k for the newly formed bubble
was calculated. Slight inaccuracy enters in this approach because i, j, and
k denote a range in n, and not discrete values. The calculations were then
carried out as in the previous case.

The moments and characteristic values calculated for the preceding
case were also calculated for this case. Equation (20) was slightly modified,
since in this case An is a function of i, and only 125 values of i were
considered.

D. Results

The calculated distributions in this case were extremely smooth, with
no oscillation as detected in the preceding case, although the results were not
as accurate. The calculated number of atoms, which should be constant,
varied from m through a maximum of 1.11lm at 7' = 8.5, then decreased
slowly to 1.014m at 7' = 568, the highest value considered, The number of
time steps used was 1300, which is considerably more than in the previous
Ease.

The results are generally consistent with the approximate calculation
given above. That is, the predicted mean radius and volume change are very
nearly linear with time, and the characteristic values of n are proportional

to the square of T'. AtT' = 568, the

e ! ! ] / ] calculated slopes are 0.977 for the mean
s G <> radius and 0.945 for the volume change.
<ZIE The difference results primarily from
u_,tl 500} the error in m. This error affects the
5% mean radius calculation less because
g& 400 the mean radius is given by the ratio of
N two moments [see Equation (13)], so that
w3 ol the error in m is effectively cancelled.
ié The results are given in Fig. 7, in which
§<Zz A the ratio of moments <nl/z>/< n®> and
sg 100 15+0.60T" the moment <n3/z> are plotted as func-

tions of 7'. These results can be ex-
0§ 'olo zcl)o 3')0 4(I>O 5(')0 00 pressed approximately by the equations
DIMENSIONLESS TIME, T [ 1/25 /o105 = 15 +0.60 7' (32a)
42289 vl

Fig. 7. Dependence of Bubble-distribution Pa-
rameters on Time., The mean radius
r is a function of the ratio of moments
<«n}/25 /<n®>, and the swelling AV
is a function of the moment <n%/2>.

e e e e (32b)

which correspond to the lines drawn in
g
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The calculated slopes for the characteristic values of n are approxi-
mately 1.94. If, as in the preceding case, it is assumed that the distribution
approaches a standard shape, with decaying amplitude and spreading range,
then it can be shown from the above results that the distribution must be of
the form

G(n,t) = m7'7*Z,(u'), (33)
where u' = n/7'% Calculations of the standard frequency curve Z,(u') for
several values of 7' give the results summarized in Fig. 8. It appears that
the distribution tends toward a standard shape with increasing time, but not
nearly as rapidly as in the preceding case.

&> T T T T T T
g 3 [ T-3625 T=567.6 1
= a4l =
B
= u ]
0z 3™ [R -
=20 T=185.4 | l’ .
a9 21— =
=gl T'=56.5 A
i
> I Al
i 4
R 2 ] ] ! | | )
00l 002 005 0. 02 05w 510wy +20
X 2
u'=n(T)
42288

Fig. 8. “"Standardized" Size-distribution Curves
for Biased-migration Coalescence

The predicted values for the mean radius and volume change, from
Equations (13), (15), (24), and (31), are

r = -0.40ma,Dgft/, (34a)
and
AV T -0.33m%TaoDsft/Y% (34b)

where the constant terms in Equation (32) have been omitted. Comparison

of Equations (34a) and (30) leads to the conclusion mentioned previously that
= 1/2. Although this value of g brings the approximate results intoagree-
ment for the mean radius, the error in AV is still significant [~65% com-
pared to Equation (31b)] because of the relatively wide variation in bubble
size compared to the previous case.

The force on the atoms can be related to a surface-diffusion heat of
transport, Q¥, by comparing the flux relation used in the derivation of
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20
Equation (1) to the flux relation given by Denbigh!? for diffusion in a thermal
gradient. The surface density V is considered constant, so that the result is?

Q% VT
T

£f = =

; (35)

Although no experimental data are available for the heat of transport for
surface diffusion, an order-of-magnitude estimate of @ 1l0) kcal/mole will
suffice to give a semiquantitative measure of the results of coalescence to
be expected according to the present theory. For a thermal gradient of

10° °C/cm, the results for copper at 1000°K with m = 10%° atoms/cm3 are,
from Equations (34a) and (34b),

o
-:— = 0.4 A/sec,

and

ATV 2 2.7x 1072 %/sec.

o
The results for an annealing time of 1 hr are r ~ 1400 A and AV = 10%. The
effects of changing m, T, or VT are apparent from Equations (34) and (35).

V. DISCUSSION OF RESULTS

Equations have been derived for the speed of pore migration in an
energy gradient and for pore diffusivity under the assumption that a small
pore migrates by surface diffusion. Other migration mechanisms, such as
evaporation and condensation at the leading and trailing surfaces,'® may be
expected to be significant in larger bubbles.

The resulting equations, which generally confirm earlier and usually
more approximate results, have been applied in analyses of bubble coales-
cence upon postirradiation annealing for two highly idealized cases. In
these two cases (coalescence resulting from random migration and from
biased migration in an energy gradient), several assumptions and approxi-
mations have been made. The basic assumptions are that the bubbles con-
tain ideal gas at a pressure balanced by the surface tension of the solid,
that they are present initially as very small, randomly distributed bubbles
in a perfect crystal, and that coalescence occurs instantaneously when two
bubbles meet. We have ignored the problems of bubble nucleation, interac-
tions with dislocations or grain boundaries, migration by other mechanisms,
and equilibration of the gas pressure and surface tension after coalescence,
although many of these considerations have beendiscussed previously.a'“’ 2
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Despite these limitations, several results are significant. First,
swelling is not likely to be significant if it occurs only by random migra-
tion and coalescence of bubbles in large-grained material, but swelling can
be greatly enhanced if some external effect can influence bubble migration.
A similar conclusion was reached by Loomis and Pracht; recrystallization
was shown to be a necessary prerequisite for pronounced swelling in their
experimental investigation of alpha uranium.!®

Second, the importance of considering the entire distribution of bub-
ble sizes, rather than only the mean radius, has been emphasized, and it
has been shown that the mean bubble size gives only a semiquantitative
measure of the swelling.

In addition, the fact that the calculated distributions approach a
standard form should be very useful in future work, for it implies that the
approximate relation for swelling in terms of the mean radius [Equa—
tion (31b)] is correct except for a proportionality constant. The assumption
of a standard distribution may also lead to simpler treatments of problems
such as that treated here. Such treatments would be very useful in consid-
eration of other problems, such as coalescence of bubbles on dislocations?’
or grain boundaries.

In conclusion, it should be noted that the finite-difference method
developed here is a powerful method that can be applied not only to more
realistic cases of bubble coalescence, but to a variety of other problems,
such as colloid coagulation.”
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